VACUUM CHALLENGES AND SOLUTIONS

October 2005

In association with Practical Vacuum
As a global leader in pressure measurement and control, we know a thing or two about measuring vacuum.

(Makes tough purchasing decisions that much easier.)

HPS Vacuum Transducers from MKS. Intelligent, compact, microprocessor technology that integrates multiple sensors and saves you money.

If you could buy your vacuum transducers from the world leader in total process control, why wouldn’t you? Now you can get it all from MKS with our line of HPS® Vacuum Transducers which provide pressure measurement capability from 10^{-6} to 1,000 Torr. This comprehensive product family includes Piezo, Pirani, and Ionization gauge technology and features standard analog output with setpoint relays for process control. Other models in the HPS line include digital communication capabilities for expanded system control. Our compact, integrated design, coupled with affordable pricing, makes the HPS® family of vacuum transducers an intelligent and easy choice. Put the power of MKS behind your next design. For more information, please visit www.mksinst.com/vac to download an informative brochure or request an online quote.
Vacuum challenges and solutions

Reliability and innovation are touchstones for the vacuum industry in the 21st century. Reliability is needed to get the most out of expensive manufacturing equipment, while innovation is essential to cope with the increasingly complex demands that are being placed on the suppliers of vacuum equipment by a range of customers. This special *Physics World* supplement starts with a general introduction to vacuum science and technology by Ugo Valbusa, the president of the International Union for Vacuum Science, Technique and Applications (p5). This is complemented by a summary of the broad field of vacuum coating, including the crucial process that goes by the name of “sputtering” (p11), advice about how a Master’s degree can improve your career prospects in the vacuum industry (p9) and a trio of case-studies from different vacuum companies (pp7, 15 and 17). This is the fourth year in a row that *Physics World* has published a vacuum supplement. We hope you enjoy it as much as you did the previous three.

Contents

Vacuum around the world 5
The International Union for Vacuum Science, Technique and Applications represents all sections of the vacuum community, as its president, Ugo Valbusa, explains

Rising to the uniformity challenge 7
Building a “showerhead” for a gas reactor presented several challenges, as Paul Brooker of Creative Group describes

Mastering the vacuum 9
An MSc in vacuum technology is a passport to a career in many different industries. Philip Parsons recounts how he landed a job at GV Instruments

The secret world of vacuum coating 11
What do drill bits, food packing and architectural glass have in common? They all rely on vacuum coatings, as David J Christie of Advanced Energy Industries reports

Innovative approaches to pumping 15
Architectural glass production places big demands on pumping systems. Willijan Vissers of Varian Incorporated describes what is involved.

Model shows how to turn one pump into two 17
How do you convert an ordinary turbo pump into a split-flow version? Andy Pearce of Oxford Vacuum Science explains all

Diary 18

Front cover: Advanced gas delivery system developed by Creative Group for Thomas Swan Scientific Equipment.
You and Varian: the Winning Team.

Get the benefits of a global supplier of Vacuum Technology:
- A pioneer in the vacuum industry for over 50 years
- 24 hours Service Support available worldwide
- Innovative Turbomolecular pump line with controllers on board
- Full range of Diffusion, Rotary Vane and Scroll pumps

World leader in Ion Pumps technology
On-line ordering now available

Have a test run with our new products:
- Turbo-V 3K-T
- PHD-4
- SH-110

Interactive catalog on CD

Varian, Inc.
Vacuum Technologies
Canada and US Toll Free Number: 800.882.7426
Europe Toll Free Number: 00.800.234.234.00
www.varianinc.com/vacuum

Inspir ing Excellence
Most research labs rely on vacuum conditions and equipment to some degree. Vacuum technology is used in high-energy physics experiments, space simulations, surface science and many other areas of research. The list of research equipment that relies on vacuum conditions is extensive: electron microscopes, analytical mass spectrometers, scanning tunnelling microscopes, ion implanters, molecular beam epitaxy equipment, particle storage rings, film evaporators and a host of analytical tools that are used to probe the properties of surfaces – from low-energy electron diffraction and Auger spectroscopy to field ion microscopy and X-ray photoelectron spectroscopy.

Vacuum technology is also used extensively in industry; for example, in the manufacture of integrated circuits and electrical components, vacuum packing and forming, thermal insulation, gas sampling, degassing of oils, distillation, and in metallurgical, pharmaceutical and chemical processes. The food industry, for instance, employs vacuum during freeze-drying – a process that enables most foods to be stored without refrigeration. The production of vacuum lamps, X-ray tubes, field-emission display devices and display technologies used for television screens requires a pressure of about 10^{-6} mbar.

A plethora of products used in the world today are based on thin-film coatings technology. These products range from machine tools that have been coated to increase their lifetime, through decorative finishes on various materials (including metals, plastics and ceramics), to anti-reflection coatings on eyeglasses and camera lenses.

The traditional techniques used to reach vacuum conditions in standard vacuum equipment are now being implemented for nanotechnology applications too. SAES Getters, for example, is applying vacuum techniques that were originally developed for vacuum electron devices in the early days of electronics to microelectromechanical systems (MEMS) technology. To work properly, a MEMS device needs to be inside a hermetically sealed vacuum. The “getter” film can be activated during the bonding process and will continue to work as required during the lifetime of the device, thus ensuring long-term reliability and low cost.

Inertial sensors based on MEMS devices that work in a vacuum are an established industry, with performance:cost ratios improving each year. MEMS will soon make many non-MEMS components obsolete and should also open up new applications owing to their small size and weight, modest power consumption and cost. However, this will require co-operation between physicists, chemists, materials scientists, engineers and technologists who are active at every stage, from basic and applied research, through development to manufacturing.

The International Union for Vacuum Science, Technique and Applications (IUVSTA), which was founded in 1962, plays a key role in bringing together all of these different scientists, engineers and technologists to discuss issues of common interest and to promote the use and development of vacuum science and technology. IUVSTA also unites the vacuum communities of different countries. Indeed, 30 national vacuum societies, including 20 from Europe, are members of the union, which now represents almost 15 000 scientists and technologists worldwide.

IUVSTA promotes and coordinates international meetings and develops educational material for international use. It also has the following divisions: applied surface science; electronic materials and processing; nanometre structures; plasma science and techniques; surface engineering; surface science; thin film; and vacuum science and technology. A programme of workshops and schools provides a forum for discussion within these divisional areas. This programme has organized 42 workshops and seven schools since it was established in 1977.

One of the most important functions of IUVSTA is to organize the International Vacuum Congress, which takes place every three years. At the next congress, IVC-17, which will be held in Stockholm, Sweden, from 2 to 6 July 2007, IUVSTA will present two prestigious prizes that recognize and encourage outstanding internationally acclaimed research and achievements in technology and instrumentation. IUVSTA is also involved in organizing other conferences, such as the International Conference on Thin Films, the European Vacuum Conference, the Vacuum and Surface Sciences Conference of Asia and Australia, and the European Conference on Surface Science.

The European vacuum community is particularly active in IUVSTA, and a committee of European representatives has been established to provide a forum for discussion about coordinating activities at the European level.

Ugo Valbusa is president of IUVSTA (www.iuvsta.org) and professor of physics at the University of Genova, Italy (server1.fisica.unige.it/~valbusa/webpage/paginaweb.html)
Creative Group is one of Europe’s leading specialists in vacuum technology and manufactures an extensive range of quality fittings, instrumentation, pumps and systems. Creative also provides metal joining, inspection, design and vacuum testing services to many leading names in the process, research, semiconductor and aerospace industries.

Creative Group
Cavea House, Decoy Road, Worthing, West Sussex BN11 8ND UK.
Tel: +44 1903 204 542 • Fax: +44 1903 215 678
E-mail: sales@creativevacuum.co.uk
www.creative-group.biz

Creative Group
Vacuum Technology Solutions
Design to Production

- KF, ISO and CF vacuum fittings
- Stainless steel bellows and flexible hoses
- Vacuum gauges and switches
- Valves, diaphragms and pressure sensitive elements
- Plant, rigs and reservoirs
- Electron beam and TIG welding
- Vacuum brazing and heat treatment
- Precision CNC Machining

Creative Group is one of Europe’s leading specialists in vacuum technology and manufactures an extensive range of quality fittings, instrumentation, pumps and systems. Creative also provides metal joining, inspection, design and vacuum testing services to many leading names in the process, research, semiconductor and aerospace industries.

Creative Group
Cavea House, Decoy Road, Worthing, West Sussex BN11 8ND UK.
Tel: +44 1903 204 542 • Fax: +44 1903 215 678
E-mail: sales@creativevacuum.co.uk
www.creative-group.biz

Wide Range Vacuum Measuring System
AIMION
Compact

1000 to 10^{-8} mbar
high accuracy and repeatability reliable, easy installation
industry-proven in coating and other demanding applications

New: Long-life filaments
Rising to the uniformity challenge

Thomas Swan Scientific Equipment Ltd designs a range of reactors for the manufacture of semiconductor devices, such as light-emitting diodes, laser diodes and field-effect transistors. These reactors use a water-cooled “showerhead” developed by Creative Group, a UK-based vacuum technology company, to deliver gases to the reactor through an array of small tubes. The use of the showerhead ensures that the gases are uniformly distributed over the area of deposition.

The different gases are introduced to the reactor through different tubes, and they then react to form products that are deposited over the area of deposition. Using the showerhead ensures that the gases are uniformly delivered system consisting of 9600 tubes, each with an internal diameter of 0.6 mm, within a working area with a diameter of 19 inches. Alternate rows of long and short tubes deliver gas to the reactor through an array of small tubes. The Creative Group, a UK-based vacuum technology company, to develop a manufacturing process that could construct a showerhead gas-deposited layer is uniform across the entire area of the substrate.

To make the showerhead, each tube is inserted into the predrilled lower plate and a “braze” paste is applied to join each tube to the plate. The tubes are brazed to the plate in a vacuum furnace at a more than 1000 °C. A compound is applied to prevent the braze from migrating to areas where it is not wanted and to ensure that the tubes are not blocked.

Special vacuum furnace heat-cycle programmes were developed to ensure that the heat distribution across the assembly was even. This was difficult owing to the difference in thickness between the showerhead walls and the plates. To ensure a correct join and to minimize braze migration, the plate had to be heated evenly to within 5 °C of the optimum temperature.

The predrilled middle plate is then fitted over the tubes and brazed in the same manner, forming the water-cooled void. This void is tested with a mass spectrometer to ensure that water cannot leak through any of the 9600 tube joints. To complete the assembly, the upper plate is vacuum brazed in place over the long tubes. Throughout this process, including the three vacuum brazing operations, all of the tubes must remain open to ensure the even distribution of the reagent gases to the substrate. A flow test is undertaken on the final assembly to ensure that this has been achieved.

The density of tubes and the complexity of the vacuum brazing process have enabled this showerhead design to provide Thomas Swan with many technical benefits for its reactors.

Paul Brooker is managing director of Creative Group (www.creative-group.biz)
Scanwel was established in 1974, to provide a rapid response service to the rapidly expanding market in high vacuum fittings and fabrications. Although the product range has continuously expanded in over 30 years of trading, the overriding philosophy within the company is still customer first. We take pride in supplying our academic, government and industrial customers with quality vacuum equipment at competitive prices on time.

- We carry an extensive stock (probably the widest in the UK) of our own manufactured vacuum hardware, ranging from basic fittings, flanges and valves through to electrical and motion feedthroughs.
- We specialise in producing custom fabrications and chambers, for clean and uhv applications.
- Our custom designed systems are exactly that; conceived and designed with your full involvement. The end result is a product that meets your requirements.

Our own product range includes vacuum components, custom chambers and bespoke systems. Scanwel is the exclusive distributor in the UK and Ireland for the following leading companies:

- Gamma Vacuum
- SPECS
- Huntington
- RHK
- CREATEC
- PSIA
- Hemi Heating
- Kimball Physics

Scanwel Ltd, Llandderfel, Bala, Gwynedd LL23 7HW, UK. Tel: +44 (0)1678 530281. Fax: +44 (0)1678 530320.
An MSc in vacuum technology is a passport to a career in one of many different industries

Over the past 30 years, vacuum technology has revolutionized industrial and scientific processes, underpinning the advances made in many areas. There is a symbiotic relationship between the semiconductor and vacuum industries, with the development of new vacuum hardware leading to the creation of new generations of electronic devices. At the other end of the vacuum spectrum, “rough vacuum” is used in applications as varied as chilling lettuce, moving concrete and packaging meat. This proliferation of vacuum applications has led to a shortfall in suitably trained and qualified personnel.

Historically, universities have found it difficult to position vacuum engineering in a specific subject area. Consequently it has been omitted from degree programmes. The MSc in vacuum engineering at Salford University was started five years ago with the support of the Engineering and Physical Sciences Research Council and many vacuum companies. Some of these – MKS Instruments, Varian Vacuum and Busch (UK) Ltd – play a significant role in ensuring that the latest developments are incorporated into the course. Full-time (12-month) and distance-learning (24–60 month) options are available.

Before learning about the MSc, I had little idea of how relevant vacuum technology was to so many different areas. However, I became interested in enrolling on the course when I realized the potential of such a qualification.

Last October, 14 people from a variety of backgrounds and countries began the course. While many of us had come directly from engineering or science degrees, there were also mature students, including two from the Libyan petrochemical industry. One advantage was that several grants were available to pay the fees and, in some cases, living costs too.

The course was modular and provided both a practical and a theoretical approach. The first semester familiarized students with basic vacuum concepts, and the second related these ideas to industrial applications and processes, including leak detection, thin-film processes and analytical technologies.

Each module was assessed by a combination of a lab report (worth 20% of the total mark), a written assignment (20%) and an examination (60%). The lectures were more informal than those that I had attended as an undergraduate and this made me feel more engaged with the subject. Indeed, one colleague said that the course had rekindled her interest in science and she has now applied to do a PhD in superconducting materials.

Mass spectrometry was the subject that interested me most, both from the point of view of the science and technology and also in terms of the resulting employment opportunities. The mass spectrometer is perhaps the most influential instrument in scientific use today, and a vast industry is involved in producing, maintaining and developing these devices, so I decided to do my project placement in this area.

The project takes place after the taught part of the course. The possibility of gaining experience in a relevant company appealed, although there was also the option of carrying out research at the university. I found that there was no shortage of industrial companies eager to take on a student. Five local firms offered me interviews. Finally I decided to work with GV Instruments in Manchester on a project relating to the nuclear industry. I have since been taken on full time as a test and installation engineer. An added bonus is that the position offers me the potential to travel the world for four months each year.

I thoroughly enjoyed the MSc course and it greatly improved my employment prospects. An array of industries relies on vacuum technologies and I have been offered jobs by companies in the UK, Spain and the US. I would recommend anyone with a scientific or engineering background to apply to join this course.

Philip Parsons is a test and installation engineer at GV Instruments (www.gvinstutres.co.uk). Further information about vacuum courses at Salford is available from Richard Pilkington (r.d.pilkington@salford.ac.uk; www.cse.salford.ac.uk/vacuum)
J.A. Woollam spectroscopic ellipsometers offer the highest quality, accuracy, and reliability. Take spectroscopic ellipsometry to a new level, with the widest spectral range available: VUV to the Far-IR.

Accurately determine:
- Optical constants
- Thin film thickness
- Composition
- Chemical bonding
- Birefringence...and more.
What do drill bits, food packing and architectural glass have in common? They all rely on vacuum coatings.

Vacuum coating is used widely in both consumer and industrial products. It has the unique ability to modify the characteristics of a surface through the addition of one or more thin-film layers. As the science of vacuum coating has developed, it has become possible to tailor the properties of the film by controlling morphology, composition, crystal orientation and stress.

Applications of vacuum coatings include the aluminium coating on compact discs, the titanium nitride (TiN) coating on drill bits and industrial cutting tools, the silicon dioxide (SiO₂) coatings that act as a barrier to oxygen in food packaging, and low-emissivity (low-e) coatings on architectural and automotive glass. Low-e coatings make buildings more energy efficient, pleasant and attractive, while the gold-coloured TiN coatings on drill bits extend their life by three to four times.

Sputtering is a common vacuum coating technique. For example, aluminium can be sputtered from a target by argon ions then deposited on a workpiece (e.g. a CD). The argon ions strike the surface of the target, causing individual aluminium atoms to be “sandblasted” away. These then propagate to the workpiece, where they condense on the surface, just as steam condenses on a mirror. Few of the sputtered atoms are ionized (typically ~1%), so their transport is not significantly affected by electric or magnetic fields. Rather, the transport is dominated by gas kinetics and collisions.

The process can be modified by adding a reactive gas. In reactive sputtering, atoms from the target react with the gas molecules to form a product that is then deposited. For example, elemental silicon sputtered from the target can react with
O\textsubscript{3} molecules to form SiO\textsubscript{2} at the surface of the workpiece. Reactive sputtering is a useful technique for depositing many compounds that are in common industrial use (e.g. TiN, TiO\textsubscript{2}, SiO\textsubscript{2}, Si\textsubscript{3}N\textsubscript{4}, SnO\textsubscript{2}, ZnO and Al\textsubscript{2}O\textsubscript{3}). Films of these compounds find applications in antireflective coatings, high-performance mirrors, solar control coatings, automotive glass, architectural glass, hard coatings on tools.

For semiconductor devices, characteristic dimensions have decreased and aspect ratios increased, making ionization of the target atoms increasingly important. There are many advantages to having highly ionized material. The main one is that ions can be directed to the workpiece by electrical or magnetic fields. An electrical bias on the workpiece’s surface can cause the ions to go round corners and cover, or fill, high-aspect-ratio features, such as trenches in semiconductor devices.

An electrical bias on the surface of the workpiece also determines the energy of the ions that reach the surface. These can come from the target material or the process gas, and both will deliver energy to the surface of the workpiece, controlled by the bias voltage. A properly chosen voltage permits denser, higher-quality films and makes it possible to tune the properties of the film (e.g. index of refraction, optical loss, conductivity and density) to match the application.

In conventional magnetron sputtering, only a tiny fraction of the sputtered target atoms are ionized. Larger ionization fractions have been created by multiple means with plasmas and cathodic arc systems. The latter is used widely for rugged applications, such as applying coatings to cutting and forming tools with compounds, and providing lifetime functional coatings on door hardware and plumbing fixtures. In more precise applications, such as semiconductor manufacturing, highly evolved sputtering magnetrons can ionize greater fractions of the target atoms with high repeatability.

In general, new technologies can be evolutionary or disruptive, with the latter fundamentally changing consumer expectations. Disruptive technologies, such as large-screen plasma and LCD flat-panel displays, can drive demand for industrial vacuum coating equipment, often fuelled by consumer demand, with demand accelerating when the price drops significantly.

It is hard to predict future trends because so many technologies are competing for wide-scale adoption. In any case, emerging applications always place greater demands on thin-film and coating technology. Process power supplies are expected to have lower arc energy and better arc-management characteristics. Mass flow controllers are increasingly expected to have digital interfaces and to be insensitive to the gas supply pressure, with the user able to select the calibrations for multiple gases. Moreover, atomic layer deposition, a chemical-based technique for depositing one monolayer at a time, may supplant sputtering in some semiconductor manufacturing process steps. But, even if it does, vacuum coating will be with us for some time to come.

David J Christie is a senior scientist at Advanced Energy Industries, Inc (www.advanced-energy.com), is on the adjunct faculty in electrical and computer engineering at Colorado State University and is on the board of directors of the Society of Vacuum Coaters (www.svc.org).
Materials & Solutions for research and industry

Standard and custom made products in Pure Metals, Alloys, Polymers, Ceramics, as well as many Composites and Compounds in various forms including foil, rod, tube, wire, powder, etc. All available on our secure website – and with a 5% discount!

Goodfellow Cambridge Limited
Ermine Business Park
Huntingdon, PE29 6WR
Tel: 0800 731 4653
or +44 1480 424 900
Fax: 0800 628 7689
or +44 1480 424 900
E-mail: info@goodfellow.com

Instruments for Exact Science
E-mail: info@hiden.co.uk

EQS SIMS Probes

Precision Surface Science

FOR WORLDWIDE CONTACT:

www.HidenAnalytical.com

High resolution, fast response, analysis of gases, radicals and ions in:
• UHV Desorption Studies
• End Point Detection
• Surface/Interface Analysis
• SIMS/ISS/SNMS
• Molecular Beam Experiments

Oxford nanoScience Ltd
4-6 Carters Lane, KIln Farm, Milton Keynes, MK11 3ER, UK
T: +44 (0)1908 563267
E: ons-sales@polaron.co.uk
www.onscvt.com

ISO 9001:2000 Accredited Company

Instruments for Exact Science
E-mail: info@hiden.co.uk

EQS SIMS Probes
Spellman High Voltage is your resource for E-Beam and I-Beam applications where ultra-high stability and precision are paramount. For E-Beam Lithography, Scanning Electron Microscope, Focused Ion Beam and Semiconductor Metrology systems, you can depend on Spellman's innovation and custom design capability to provide the precise solution for your requirements. Contact our application specialists for more information on our FIB/EBM/EGM family of high voltage generators. Call +1-631-630-3000 or email: sales@spellmanhv.com

- Over 50 Years of High Voltage Innovation
- Custom Designed Solutions for Your Applications
- World-Class ISO Certified Production Facilities
- Global Sales and Service

Spellman Limited
Broomers Park
Broomers Hill Lane Pulborough
United Kingdom
tel: +44(0) 1798 877000
fax: +44(0) 1798 872479

Spellman Japan
3-15 Kanayama-cho,
Kawaguchi-shi
Saitama-ken, Japan 332-0014
tel: +81(0) 48-228-3222
fax: +81(0) 48-228-3224

Spellman SIP Ltd
Block B #06-05/06,
No. 5 Xinghan Street
Suzhou Industrial Park,
China, 215021
tel: +86(0) 512-67630010
fax: +86(0) 512-67630030

Spellman de Mexico
Diagonal Lorenzo de la Garza no. 65
H. Matamoros, Tamaulipas
Mexico
The large sheets of architectural glass that are used in commercial and residential buildings are coated for various reasons: to alter their colour or reflective properties from an aesthetic consideration, and to control the temperature in the building, which can lead to significant improvements in energy efficiency. Indeed, the proper use of coatings to block sunlight or reflect thermal radiation back into a building can lead to financial savings, especially in large commercial buildings.

Modern architectural glass can contain up to 12 different layers, and more in some applications. While the complexity of layers is increasing, it is also essential to maintain the reliability of the production processes that are used to make the glass. In addition, higher throughput values and lower running costs are high priorities among glass manufacturers.

Most systems that produce high-volume architectural glass use physical vapour deposition technology to form the films and coatings. A target material is either evaporated or sputtered (physically ejected by high-energy ions), and the molecules from the target are directed to the glass surface, where they form a thin layer of uniform thickness.

Vacuum is required in the process chambers for two reasons: the formation of the plasma requires reduced pressure, and the sputtered atoms need unhindered routes to the substrate.

A key component in the manufacture of architectural glass is the turbomolecular pumping system. The Turbo-V 2K-G from Varian Inc is a dedicated pumping system that has been optimized to work with very high temperatures and argon gas flows. It is a complete pumping system that has innovative features such as integrated electronics, compactness and intelligent MoniTorr technology for remote pump status diagnostics.

The Turbo-V 2K-G is the only pumping system to combine a fully integrated onboard electronics interface with a dry lubrication system that is maintenance free. Finally, the integrated MoniTorr technology enables 24/7 monitoring of all pump parameters, and a dedicated software package allows the virtual presence of dedicated Varian engineers at your site.

Willijan Vissers is the manager for industrial vacuum processes at Varian Incorporated (www.varianinc.com)
The late 1990s saw the introduction of split-flow turbo pumps in which a second inlet enabled two different vacuum regimes to be pumped by the same turbo pump. This technology can be applied to more conventional pumps, but requires an understanding of the pay-off between pumping speed and compression ratio between the two inlets.

Any molecular-flow gas-transfer pump – in which gases are removed from the system rather than trapped by the pump – can be thought of in terms of conductance. The pumping speed is described by the conductance in the direction of pumping, while the compression of the pump is related to the conductance in the opposite direction (the contraflow).

A pump can therefore be represented as a Zener diode, with a critical exhaust pressure at which contraflow becomes significant. Our model, the modified conductance model, was based on the idea that the rotation of the pump dynamically modified the geometry of the pump in the reference frame of a gas molecule, increasing the conductance for gas molecules travelling down the pump and decreasing it for those travelling up the pump. The idea is best understood by visualizing the different stages in the pump (that is, the different sets of blades that do the pumping) as a series of Venetian blinds.

As a molecule passes through a stage, the motion of the blade makes the angle of the blade more parallel to the direction of motion of the molecules travelling in the pumping direction, but also more perpendicular to those in contraflow. It is as if the blind is opened to molecules travelling down the pump and closed to those travelling up it. The effect is compounded at each stage of the pump, leading to the high pumping speeds and compression ratios that make the turbo pump such an attractive technology.

This model proved to be remarkably accurate, predicting pumping speeds that were within 10% of those published by the pump manufacturer. At higher pressures we had to assume that viscous flow conductances were unaffected by the motion of the blades to produce the characteristic fall-off in pumping speed and compression ratio that is seen above 10^{-3} mbar. When all of this was done we plotted the pumping speed and compression ratio as a function of distance along the pump. With this information to hand we could then decide on the best place to add a second inlet and convert an ordinary turbo pump into a split-flow version.

Andy Pearce is managing director of Oxford Vacuum Science Limited (www.oxford-vacuum.com)
AT THE HEART OF VACUUM TECHNOLOGY.

Vacuum generation technology plays a significant role in many laboratory and manufacturing environments, and lies at the heart of many production processes. The crucial needs are for powerful, stable solutions. Pfeiffer Vacuum offers outstanding vacuum resources ranging from pressure measurement equipment to complete systems, so you always get the perfect results you need.

Vacuum is nothing, but everything to us!
Caburn together with MDC in Europe

Caburn and MDC are now together, restoring one of the most complete ranges of high and ultra-high vacuum components available in Europe.

Flanges and fittings

Valves

Roughing components

Vacuum measurement

Viewports and glass components

Feedthroughs:
- Electrical and optical
- Motion and manipulation

Thin film deposition

Chambers and custom engineering

e-Vap® Visit our website to download the new brochure detailing MDC’s extensive range of thin film deposition and *e-Vap*® products is now available to Caburn’s customers throughout Europe.

Gate valves For details, specifications and pricing information on our extensive new range of valves including MDC’s unique **one million cycle 1.5” gate valves**, contact our sales team.

Visit our website today **www.caburn.co.uk**

New e-Vap® products and gate valves now available in Europe